yaboPP电子
行业文章

理解和消除1/f噪声

本文定义了1/f噪声,并在精确测量应用中进行了减少或消除它的方法。

本文定义了1/f噪声,并在精确测量应用中进行了减少或消除它的方法。1/Fnoise cannot be filtered out and can be a limit to achieving the best performance in precision measurement applications.

What is 1/f Noise?

1/Fnoise is low-frequency noise for which the noise power is inversely proportional to the frequency. 1/f noise has been observed not only in electronics but also in music, biology, and even economics.11/F噪声的来源仍在广泛争议中,在这一领域仍在进行大量研究。2

Looking at the voltage noise spectral density of theADA4622-2op-amp shown in Figure 1, we can see that there are two distinct regions visible in the graph. On the left-hand side of Figure 1 we can see the 1/f noise region and on the right of Figure 1, we can see the broadband noise region. The crossover point between the 1/f noise and the broadband noise is called the 1/f corner.

图1. ADA4622-2电压噪声光谱密度。

我们如何测量和指定1/F噪声?

在比较了许多操作合具的噪声密度图后,很明显,每种产品的1/F角可能会变化。为了轻松比较组件,我们在测量每个组件的噪声时需要使用相同的带宽。对于低频电压噪声,标准规范为0.1 Hz至10 Hz峰峰噪声。对于运算放大器,可以使用图2中所示的电路来测量0.1 Hz至10 Hz的噪声。

Figure 2. Low-frequency noise measurement.

这op-amp is put in a unity-gain feedback configuration with the noninverting input grounded. The op-amp is powered from a split supply to allow for the input and the output to be at the ground.

活动过滤器块限制了测量的噪声的带宽,同时为从操作装置的噪声提供了1000的增益。这样可以确保测试设备的噪声是噪声的主要来源。Op-Amp的偏移并不重要,因为对滤波器的输入是交流耦合的。

滤波器的输出连接到示波器,并测量峰顶电压10秒,以确保我们捕获完整的0.1 Hz至10 Hz带宽(1/10秒= 0.1 Hz)。然后将示波器上显示的结果除以1000的增益,以计算0.1 Hz至10 Hz噪声。图3显示了ADA4622-2的0.1 Hz至10 Hz噪声。ADA4622-2的0.1 Hz至10 Hz噪声仅为0.75 µV P-P典型。

Figure 3. 0.1 Hz to 10 Hz noise, Vsy= ±15 V, G = 1000.

1/F噪声在我的电路中产生什么影响?

系统中的总噪声是系统中每个组件的组合1/F噪声和宽带噪声。被动组件具有1/F噪声,电流噪声也具有1/F噪声组件。但是,对于低电阻,1/F噪声和电流噪声通常太小而无法考虑。本文仅关注电压噪声。

To calculate the total system noise we calculate the 1/f noise and the broadband noise and then combine them. If we use the 0.1 Hz to 10 Hz noise specification to calculate the 1/f noise, then we are assuming that the 1/f corner is below 10 Hz. If the 1/f corner is above 10 Hz then we can estimate the 1/f noise using the following formula:3

where:

en1Hzis the noise density at 1 Hz,

FHis the 1/f noise corner frequency,

Flis 1/aperture time.

For example, if we want to estimate the 1/f noise for the ADA4622-2, then fh is about 60 Hz. We set fl to be equal to 1/aperture time. Aperture time is the total measurement time. If we set the aperture time or measurement time to be 10 seconds, then flis 0.1 Hz. The noise density at 1 Hz, en1Hz, is approximately 55 nV√Hz. This gives us a result of 139 nVrms between 0.1 Hz and 60 Hz. To convert this to peak-to-peak we should multiply by 6.6, which will give us approximately 0.92 µV p-p.4这比0.1 Hz至10 Hz规格高约23%。

可以使用以下公式计算宽带噪声:

where:

en是在1 kHz时的噪声密度,

NEBWis the noise equivalent bandwidth.

噪声等效的带宽考虑了由于过滤器的逐渐滚动而导致的滤波器截止频率之外的其他噪声。噪声等效带宽取决于过滤器和滤波器类型中的极线数。对于一个简单的一根杆,低通的butterworth滤波器,NEBW为1.57×过滤器截止。

ADA4622-2的宽带RMS噪声在1 kHz时仅为12NV√Hz。在输出上使用简单的RC滤波器,截止频率为1 kHz,宽带RMS噪声约为475.5 NVRMS并且可以计算如下:

Note that a simple low-pass RC filter has the same transfer function as a single-pole, low-pass Butterworth filter.

为了获得总噪声,我们必须将1/F的噪声和宽带噪声添加在一起。为此,我们可以使用根总平方法,因为噪声源不相关。

使用此等式,我们可以用简单的1 kHz计算ADA4622-2总RMS噪声低通RC滤波器输出为495.4 NV RMS。这比单独的宽带噪声高4%以上。从这个示例可以明显看出,1/F噪声会影响从直流到极低带宽的系统。一旦您超越了1/F角,大约十年或更长时间,1/F噪声对总噪声的贡献就变得太小了,无法担心。

由于噪声将作为根总正方形添加在一起,因此如果噪声源低于1/5,我们可以决定忽略较小的噪声源Th较大的噪声源,因为低于1/5的比率ThThenoise contribution is about a 1% increase in the total noise.5

我们如何删除或减轻1/f噪声?

斩波器稳定或切碎是一种减少放大器偏移电压的技术。但是,由于1/F噪声接近直流的低频噪声,因此该技术也有效地降低了它。斩波器稳定功能通过在输入阶段交替或切碎输入信号,然后在输出阶段再次切碎信号。这等同于使用方波的调制。

Figure 4. ADA4522 architecture block diagram.

reFerring to the ADA4522 architecture block diagram shown in Figure 4, the input signal is modulated to the chopping frequency at the CHOPIN stage. At the CHOPOUT stage, the input signal is synchronously demodulated back to its original frequency and simultaneously the offset and 1/f noise of the amplifier input stage are modulated to the chopping frequency. In addition to reducing the initial offset voltage, the change in offset vs. common-mode voltage is reduced, which results in very good dc linearity and a high common-mode rejection ratio (CMRR). Chopping also reduces the offset voltage drift vs. temperature. For this reason, amplifiers that use chopping are often referred to as zero-drift amplifiers. One key thing to note is that zero-drift amplifiers only remove the 1/f noise of the amplifier. Any 1/f noise from other sources, such as the sensor, will pass through unaffected.

这trade-off for using chopping is that it introduces switching artifacts into the output and increases the input bias current. Glitches and ripple are visible on the output of the amplifier when viewed on an oscilloscope and noise spikes are visible in the noise spectral density when viewed using a spectrum analyzer. The newest zero-drift amplifiers from Analog Devices—such as the ADA4522 55 V zero-drift amplifier family—use a patented offset and ripple correction loop circuit to minimize switching artifacts.6

图5.时间域中的输出电压噪声。

切还可以应用于仪表plifiers and ADCs. Products such as the AD8237 true rail-to-rail, zero-drift instrumentation amplifier, the new AD7124-4 low noise and low power, 24-bit Σ-Δ ADC, and the recently released AD7177-2 ultralow noise, 32-bit Σ-Δ ADC, use chopping to eliminate 1/f noise and minimize drift versus temperature.

使用方波调制的一个缺点是方波包含许多谐波。每个谐波的噪声将被解调回DC。如果使用正弦波调制,则此方法不太容易受到噪声的影响,并且在大噪声或干扰时可以恢复很小的信号。这是锁定放大器使用的方法。7

Figure 6. Measuring surface contamination with a lock-in amplifier.

在图6中所示的示例中,传感器输出通过使用正弦波来控制光源来调制传感器输出。光电探测器电路用于检测信号。信号通过信号调节阶段后,它可以解调。相同的正弦波用于调节和解码信号。解调将传感器输出返回到DC,但也将信号调节阶段的1/F噪声移至调制频率。解调可以在ADC转换后的模拟或数字域中完成。一个非常狭窄的低通滤波器(例如0.01 Hz)用于拒绝DC上方的噪声,我们只剩下具有极低噪声的原始传感器输出。这取决于传感器的输出正好在DC处,因此正弦波的精度和保真度很重要。这种方法消除了信号调节电路的1/F噪声,但不会消除传感器的1/F噪声。

如果传感器需要激发信号,则可以使用AC激发来消除传感器的1/F噪声。AC激发通过交替进行传感器激发源来产生传感器的方波输出,然后从激发的每个阶段减去输出。这种方法不仅允许我们消除传感器的1/F噪声,而且可以消除传感器中的偏移漂移并消除不必要的寄生热电偶效应。8

Figure 7. AC excitation of a bridge sensor.

AC excitation can be done using discrete switches and controlling them with a microcontroller. The AD7195 low noise, low drift, 24-bit Σ-Δ ADC with internal PGA included drivers to implement ac excitation of the sensor. The ADC manages the ac excitation transparently by synchronizing the sensor excitation with the ADC conversions, making ac excitation easier to use.

图8. CN-0155 - 使用内部PGA和24位σ-δADC和交流励磁

执行

当使用零直流放大器和零饮用ADC时,重要的是要注意每个组件的切碎频率以及发生间调整失真(IMD)的可能性。当两个信号合并时,所得波形将包含原始两个信号,以及这两个信号的总和和差异。

例如,如果我们考虑使用ADA4522-2零直流放大器和AD7177-2σ-δADC的简单电路,则每个部分的切碎频率将混合并创建和差信号。这ADA4522-2Has a switching frequency of 800 kHz, while theAD7177-2开关频率为250 kHz。这两个开关频率的混合将导致550 kHz和1050 kHz的其他开关工件。在这种情况下,数字过滤器的2.6 kHz的AD7177-2最大角频率比最低的伪像低得多,并且将删除所有这些IMD伪像。但是,如果以串联使用两个相同的零浇口放大器,则创建的IMD将是零件内部时钟频率的差异。这种差异可能很小,因此,IMD将出现在更接近DC,并且更有可能落入感兴趣的带宽内。

In any case, it is important to consider IMD when designing a system that uses zero-drift or chopped parts. It should be noted that most zero-drift amplifiers have much lower switching frequencies than the ADA4522-2. In fact, the high switching frequency is a key benefit to using the ADA4522 family when designing precision signal chains.

Conclusion

1/F噪声可以限制任何精确的DC信号链中的性能。但是,可以使用诸如切碎和AC激发等技术来将其删除。使用这些技术有一些权衡,但是现代放大器和σ-δ转换器已经解决了这些问题,使零漂移产品更易于在更广泛的最终应用中使用。

reFerences

1. W. H.按。'Flicker Noises in Astronomy and Elsewhere。”《天体物理学评论》,1978年。(PDF)

2。F.N. Hooge. ‟1/f噪声源。”电子设备卷上的IEEE交易。41,11,1994。

3。MT-048. ‟运算放大器噪声relationships: 1/f Noise, RMS Noise and Equivalent Noise Bandwidth。”模拟设备,2009年。(PDF)

4。Walt Jung. ‟运算放大器应用手册。”Newnes, 2005.

5。MT-047. ‟运算放大器噪声。”模拟设备,2009年。(PDF)

6。Kusuda Wong. ‟零浇口放大器:现在易于在高精度电路中使用。”模拟对话卷。49, 2015.

7。Luis Orozco. ‟Synchronous Detectors Facilitate Precision Low-Level Measurements。”模拟对话卷。48, 2014.

8。Albert OʼGrady. ‟Transducer/Sensor Excitation and Measurement Techniques。”模拟对话卷。34,2000。

行业文章是一种内容的一种形式,可让行业合作伙伴与所有有关电路读者的新闻,消息和技术分享有用的新闻,并不适合编辑内容。yaboPP电子所有行业文章都遵守严格的编辑准则,目的是为读者提供有用的新闻,技术专长或故事。行业文章中表达的观点和观点是合作伙伴的观点和观点,而不一定是巡回演出或其作家的观点和观点。yaboPP电子

2Comments
  • y
    yogeshwaran774 January 30, 2020

    任何人都可以告诉我如何找到每个设备的角频率以分析低频噪声。

    喜欢。 回复
  • r
    rudio 2020年4月10日

    All graphics in the figures a gone. What happened, how can we get them back?

    喜欢。 回复